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PREFACE

| Zhis revort describes measurements of the ionization

i rates of electrons and holes in silicon pn junctions for tae
& = shree principal crystalline directions (100>, (110), <liuy.
8 The work was conducted by Faculty and zradunte students of
¥ - the 3chool of Electrical Engineering of lJornell University,

Zthaca, New York under contract Fl9628-79--310%, =2nd
administered by the Zlectronics Jystems Division, Hanscom

3 Air Force Base, Massachusetts.

The work reported herein was performed during the perioi
] 5/1/72 to 4/30/81, the contract period, and the following

two years oy Prof. Charles A. Lee with a partial contri-
bution by Bruce Shapiro, who left the project at an early
stage. The contract was supervised by Dr. J. P. Lorenzc,

Deputy for Electronic Technology at Hanscom AFB.
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SECTION I
INTRODUCTION AND SUMMARY

The motivation for the present investigation was to see
if reorienting the crystal direction of silicon photomulti-
plying detectors could lead to a reduction in their noise at
high gain. The mean square current fluctuations in such de-
tectors is proportional to the gain squared as long as the
gain is less than the ionization rate ratio. If the gain
exceeds the ionization rate ratio then the noise increases
to something like the third power of the gain. Of all the
semiconductors investigated so far, silicon has the highest
ionization rate ratio, ranging from five to one hundred de-
pending con the value of the eléctrlc field in the avalanche

region.

Calculations of the threshold energies in various crys-
tal directions had been published by Anderson and Crowelll
showing nearly equal threshclds of avout 3 eV for both elec-
trons and holes for the {111) direction. This is the direction
for which the high ionization rate ratio is observed.2 Fur-
ther, their calculations showed that in the {100 direction
the threshold voltage for holes could be twice that (2 to 1 eV)
of the electrons. 1In tne {110) direction the ionization
thresholds were about the same at approximately 2 eV, so
presumably, the rates in this direction would be similar to
the ratio found in the 111> direction.

The results of the measurements reported here, contrary
to exoectations, show the highest rates and the smallest
ratio of rates is obtained in the <100) crystal direction,

& slightly larger ratio is obtained in tne <{110) direct.on,
and the largest ratio is obtained in tune <{111) direction.
Since 2 careful rechecking of the measurements yielded the

seme result, some thought has been given to the threshold

e W e Rt T L a3 e ST SIS e e h




caicuiationg. 1In Anderson and Crowell's work only colinear
momentum constructions of the initial and final particles
through the zone center (i.e. k=0) were considered. During
the course of this work colinear momentum constructions going
through the conduction band minima and not through the zone
center were considered. Neither of thnese sets of construc-
tions corresponds to the observed ionization rates. Non-
colinear constructions have been considered nere in which the
final particle velocities are colinear, but the wave vector
from the bLrillouin zone center to the conduction band mini-
pmum and the initial wave vector need not be colinear with the
final velocities. This non-colinear problem is much more
complex and is not solved in tnis report, but an approximation
of it is presented that gualitatively agrees with the observed

orientation dependence.

38
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SECTION 1I
DESCRIPTION OF EXPERIMENT

1. Sample Preparation

A p-type boule of silicon was oriented and wafers were
cut in the three princip’ . crystallographic directions <100),
(110>, and <111). The measured resistivity was .49§l-cm for
the {100) sample, .68 fl-cm for the (110) sample, and .50 {l-cm
for the (111> sample. The samples were then diffused at
about 110C °C in an induction heated vacuum furnace for 15
to 60 minutes. The tantalum bucket enclosing the wafers is
prebaked at about 1700 °C to get rid of electrically active
impurities. A diffusion grade phosphorous nitride was used
as a donor source. The contamination background of this

diffusion system is less than 1013/cm3

added impurities.

The time and the temperature were chosen to produce linearly
graded junction impurity profiles. After diffusion some of
these wafers were thinned to a thickness of about one mil so
that hole and electron injection in the junction could be

accomplished from opposite sides of the wafer.

2. Diode Profiling

The electric field profile of the junctions is obtained
from capacitance measurements as a function of reverse bias.
The data for a (110) diode is shown in Fig. 1 where it is seen
that the inverse cube of the capacitance is a linear function
of the bias out to breakdown. This linearly graded profile
allows 2 more accurate determination of the maximum field in
h2 junction than an asymmetric step junction. The reason
is tnat in the step junction free carrier spillage from the
heavily doped side significantly affects the maximum junction
field. Thus for a linearly graded junction the simple Schottky
approximation can be used to accurately determine the electric
field. The following constante were determined for the junc-

tion 27 fig. 1l:
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Figure l. Diode capacitance data in the (110> direction.




Area = 4.2 x 107 cn® ,

an _ 21 -4 ,
ax - 1.73 x 10 cm

V., = 0.7 Volts ,

& =4.2x 104 v .+ vbi)2/j . (1)

The capacitance data for the (100> oriented diode 1is
shown 1n Fig. 2. This data shows some curvature which is a
consequence of the fact that the diffusion time was not long
enough. The phosphorous distribution has roughly an expon-
ential distribution into a uniform background of about
4.0 x 10%%/ca’

near the maximum still has a parabolic shape, butl the electric

acceptor concentration. The electric field

field dependence on the voltage is altered significantly near
breakdown. The solid line in Fig. 2 shows the fit obtained
by assuming an exponential diffused impurity gradient and

a uniform background of acceptors,

N(x) = No(exp(—x/L) - 1) . (2)

Using this impurity distribution one can derive the follow-

ing expressions for the electric field and the total junction

potential:
qNoL w w
6m = ] - ln(ew _1) - 11, (3)
gN L2
(V + vbi) = 2 uykw/?)coth(w/2) - 1] (4)

where w= w/L, and w is the junction depletion width. The
parameters of the fit to the data shown in Fig. 2 are:
-7 2
Areaz = 1.7 x 10 7 cmo” ,
No = 4.1 x lO16 cm4 ,
L= 1.28 x 107° cm ,

Vbl = 0.6 Volts

Note that the background doping agrees well with that deter-
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mined from resistivity measurements before diffusion.,

Capacity data for the (111) directioa is not presented
because multiplication data were directly cowmpared with cal-
culated multiplication using previously published ionization
rates.2 In addition, all of the parameters given above for the
{100) and the <110) have an error tolerance of about %%.

3, Photomultiplication Measurements

The eleciron and hole multiplication data for the (1107
and the (100> directiomns, which are shown in Fig. 3, were ob-
tained using two different techniques. To obtain pure elec-
tron and hole excitation of the avalanche a (110> oriented
wafer was thinned to 2 thickness of slightly less than 25 unm,
and non-penetrating radiation was used to illuminate the diode
from opposite sides of the junctian. The multiplication data
obtained this way was compared with that obtained by using non-
penetrating radiation (435.8 nm interference filter) from the
n-side for hole excitation and using a GaAs filter to obtain
penetrating radiation, again from the n-side, to obtain the
electron excitation. This second technique relies on the fact
that only a small number of Loles will be gencrated in the dif-
fused layer of about 1 micron thickness while electrons are coll-
ected over a distance of some 30 microns at least in the p-
type substrate when penetrating radiation is used. Both
techniques gave multiplication data for electrons and holes
that agreed to within about 5%, so the simpler second technique
was used to obtain the data on the (100> sample.

For comparison, Fig. 4 shows calculated electron and hole
multiplication in the <111) direction for a breakdown voltage
close to that of the (110> data. Perhaps the best way to
illustrate the differences between the three crystal direc-

tions is to plot the multiplication versus the normalized

7
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- voltage as 1s shown in Fig. 5. Here tne hignestu multiplica-

? tion and the smallest ratio of electiron ané noie multiplication

o, R ey

1s obtained in the (100) direction. In the {110) cirection

E the multiplication is somewhat less and the ratio of electror.
| to hole multiplication is slightly larger. In the (111) dir-
ection the electron multiplication 1s seen to oc siightly

smaller than the hole multiplication in the (1J00) zirectior.

B A & Ml =,

wnlle the hole multiplication is very much lower. This data
implies that the lowest threshold ionization energy should be
founa 1n the (1lU0) direction, an intermediate threshold for
the (110) direction while the highest threshold shoulé be
found for the (111) direction. The implication of this data
1s thus at variance with the thresholds calcuiated by Ander-
son and Crowell except for the electron threshold in the (ldO)
direction. The last section will consider non-col:near mom-
entum constructions that car account for the observed multi-

plication data.

10
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SECTION III
IONIZATION RATES

For the linearly graded junctions we are cons.dering the

integral equations relating tne ionization rates to the multa-

plication data are given by2

: M 7 Em .
65[1 - %](f) =f a8t : (5)

3 t ¢
2 ¢ _ 1M - [“Pa__ae
v & [1 - Mp](Mn> B B ' (e)

0] (éb— &)*

= |ro

3

These integrals are special cases of Abel's integrel equation
and the solutions to Egs. (5) and (6) can be written in the

following form which 1is suitable for numerical evaluation:

l 1
4¢ | ¥ \?
a(€ ) = 52| ds(i-s9)7 a—g—[(l- f—X,ﬁ) ] , (7)
s n/\ p

0
’fg%
B e
n

st ! 2,3
Bl&,) - —ﬁf (157 %[(1- »%)
0 8 P

where &= 6m(1 - 82), and the voltage derivative of the

function of the multiplication is evaluated at the voltage
VS corresponding to a maximum electric field in the junction
= 2

The multiplication data shown in Fig. 3 has been used
to evaluate Eqs. (7) and (8). It has been noted that the
profile of the (100> sample is not quite a linearly graded
Junction, but 1t has been estimated that the slight asymmetry
of the electric field distribution in the region where the

1onization rates are appreciable should not change the result




{ obtaired by assuming a linear gradient by more than 5%. The
‘ calculated ionization rates are plotted in Fig. 6. For

j comparison the previously published rates for the (111) dir-

; ‘ ection2 are shown in Fig. 7. At the present time it is not

% :1 clear why the slope of the ionization rates gets progress-
ively more negative as one goes from the (100) to ¢(110) to
the (111> direction.
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SECTION IV

IONIZATION THRESHOLD ENERGIES

gy

1. 01d Threshold Estimates

The most complete estimate of the i1onization thresholc

. -4
energies was carried out by Anderson and Croweli™ wnc pro-

ceeded from the pseudopotential calculations of Chelikowsky

3

and Cohen,” which are shown in Fig. 8 along with the zone
scheme for silicon which is shown in Fig. 9 for reference.

In working out their graphical solutions they assumed that
the wave vector of the initiating particle, the velocities of
the three particles after the collision, and the wave vector
from the 2zone center to the conduction band minimpum were all
colinear. Figure 10 shows tnhe 100) trajectory (X - T - X),
and the (110)trajectory (X - K - I' =« K - X). Figure 11

showe the trajectory in the (111) direction (L - [ - L).

Their lowest threshold energy is for electrons in tne (100)

j; ] direction, 1.1 eV. The threshold energy for holes in the same
direction was 1.8 eV. In the {110) direction they found a
threshold energy of 3.1 eV for electrons and a hole energy

of 1.8 eV, PFinally in the (111) direction they obtained
threshold energlés of 3.1 eV for electrons and 2.9 eV for
holes. As noted before these threshold energies do not

-1 correspond to the observed multiplication.

In the course of this work it was realized that other

trajectories should be considered. Additional trajectories
were considered that were parallel to the principal crystal
directions, but passed through the conduction band minimum
along the (100> axes. The band energies along these trajec-
tories were plotted out ovut the estimated threshold energies
did not even qualitatively agree with the observed data.
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Figure 8. Calculated band structure of silicon.
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Figure 9, Brillouin zone of silicon.
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Figure 10. Particle trajectories through Brillouin zone in
(110> and (100> directions passing through the zone
center and through the conduction band minimum.
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Fisure ll. Particle trajectories through the Briilouin
20.ie in the (111) direction passing through tne zone
cenber and Lhrowrsh the conduction band minimum.
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These trajectories, however, also made the assuwption tnat al:

4 the vectors wvere colinear. It was eventually realized that
the wave vector of the initial particle need not be colinear

! with the final wave vectors nor with the wave vector from tne

center of the zone to tne conduction band minimum. Since the

geometry can be quite complex, consider the situztion illus-

L T e i T R

5% trated in Fig. 12. Here the kx-axis 1s coincident with the

. (100> direction and the ky—axis intersects the (111) direction.
{ We also consider an electric field parallel to the (111> dir-

3 1 ection, making the angle psi equal to 54.7 degrees. The init-
- ial velocity will not be parallel to the field. but will make

’ an angle § with the k -axis. Since the secondary hole is in

1- a nearly spherical band its velocity and wave vector are essen-
'ﬁ tially parallel. Then we note that the extremum of minimum

} threshold energy under the condition of conservation of crys-
S tal momentum requires that all three final velocities d¢ co-
linear. Thus if the hole is in a spherical band while the two
electrons are in a band with ellipsoidal energy surfaces,

the wave vectors will not in general be parallel.

2. New Processes for Determining Threshold Energies

We have posed a difficult problem which has not been

solved¢, bdut there is an approximate solution which gqualita-

tively agrees with the observed multiplication data. The
approximation we wish to consider is the following: at the

minimum threshold energy the particle energies after the colli-

sion should be quite small, thus only a small error should be
ircurred if one assumes the wave vectors and the velocities of
the final particles to be parallel. The wave vector from the
zone center to the conduction band minimum, however, is large
and we still allow this vector to be non-colinear. We zlso

i ' will assume that the band energies are parabolic in the plane

containing the electric field and passing through the

—~—e © - e . = W e - . — - -

i} o L o i 3 . o - * . - .
D e T b R R v S rn R R T L R 1N
K i ’ i pue 4 4 b s T " e M M " 3ot o Ry
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) Fijjure 12. Non-colinear construction for determining the
ionizalion threshold energy.
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conducticn band minimum or the valence band maximum.

|
- * The assumption of parabolic bands allows us to write the
t

! energies of the initial and final three particles,

. | £, = h2(K,, - K )2/2m, , (9)
‘ i B, = h°(E)- K )%/en , (10)
{ E, = ,hz(iz— 'ﬁo)z/zme , (11)
E),= h°(k,,)%/2m, : (12)

where the subscript 2' denotes the initial electron (in this
case), 1 and 2 denote the secondary electron and the initial
electron after collision, and 1' denotes the secondary hole.

Conservation of energy and crystal momentum give the follow-
ing relations,

Ey = Ej+ Ey» By o+ B : (13)
| Kyo= ke ke Ko, , (14)

[* ‘ where Eg denotes the energy gap and phonon cooperation is
neglected. The minimum threshold energy is obtained from

the variational equation

B{Ez, + B- ;2-} =0 , (15)

f

—

where the vector [ is a Lagrange multiplier. The result of

Eg. (l5) is that all the final wave vectors are colinear,

Ki= Ky = kym kg = (me/mh) kqo , (16)

and in the more general case it would be the velocities which
would be colinear. The non-colinear part of the problem, E;, is

—

K.,

%

not parallel, in general, to the wave vectors E;,,':i,
or fi,. By a somewhat lengthy manipulation of Egs. (13),

23




(14) and (15) we can obtain an expression for £,, 1n terms of

g the band gap energy, the displacement of the conduction band
minimun from the zone center, and the ratio of the hole to

electron effective mass,

- ol
[

oY 2« M . 1+ 4 +2c0s™6

E_ T 1+ o * )
& H (1+/.L)

i 5

3 - _ggg;,;e_? {x[x(l+y+cos2e)+(2+#)(l+,u-)]} , (37)
1 (l+/.l.)

¥ where 6 15 the angle between the wave vectors Eé, and E;,
I Py 3 = o= 2 2
. i 1 tne mass ratio mh/me, and x = Eo/Eg’ where E_ h kg /2me.

't It is 1mmediately apparent that Eq. (17) reduces to a familiar

result for a direct gap semiconductor (1i.e. ko= 0)

. 2 _ 2+H
. Eg l+ p . (18)

te
h®)

Another case of immediate interest is the (100) direction in
si1licon where © = 0 and all the vectors are colinear

s 1

Lo, - z
E‘; = i'ﬁp‘ + 54‘ H > X - _._2_5 [X(X+l+# )(24-# )] . (19)
y tH (14 p) (Lo p)

Bquation (19) contains the surprising result that for x = 1

tne threshold energy 1s exactly the band gap energy whereas

for x = O we get the classical result of Eq. (18). One

would expect that displacing the conduction bana minimum

away {rom the zone center would increase rather than cdecrease
the tnreshold energy. One further point i1s to be made concern-
ing £g.(17) and that is that one can obtain the case of a

hole being the energetic initial particle by simply invert-

ing the mass ratio y . This fact is made more iransparent by

transliating the origin in k-space to the conduction band

minimum when an energetic hole is the initial particle.

24
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we now apply Eq. (17) to the three crystalline directions
in silicon by calculating the effective mass 1n a given
orientation with respect to the energy ellipsoids from the
equation
h2 2 +l@ky2 h2k2

= * ’
2m1 2mt 2me

(20)

t1

and the value of me* is also used to evaluate the expression
for x

bzk 2
_0.= o .i (21)
E 2m * E '
g € g

(23]

and where ko is taken to be 0.9 times the distance to the
band edge in the (100) direction. Using the effective masses
m= (.98)m0, m, = (. 19)m , and m = (. 52)m we have calculated
the threshold energies of electrons and holes for the three

directions and listed them in Table 1.

It is clear from the calculated thresholds listed in
Table I for the three crystal orientations that they are
consistent with the experimental measurements. In fact the
agreement 1is sufficiently encouraging to warrant carrying out
the complete calculation where the velocities and wave vectors

are neot assumed to be colinear.

4 e d\*v’ 2, V,wt
O 5 ;

e R e I



TABLE I

CALCULATED THRESHOLD ENERGIES IN SILICON

Orien. 0 X n E2, /Eg EE'/Eg
degrees elec. holes
(10 0. .98 .53 1.0C 1.00 .
90. 5.03 2.74 2.6 | S.42
(110> 45. 3.01 1.63 1.41 1.58 i
90. 5.03 2.74 2.62 5.42
(111 54.74 3.68 2.00 1.62 2.02
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